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Simulation of the secondary-electron distribution function by a Monte Carlo method
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A Monte Carlo (MC) direct simulation method for calculating the stationary electron distribution
function (EDF) in an electron-beam plasma was developed. The EDF calculations in argon and molecu-
lar nitrogen were done. A good agreement of the results of the EDF simulation by the MC method with
those obtained using the Boltzmann equation was shown.

PACS number(s): 52.20.Fs

I. INTRODUCTION

The electron distribution function (EDF) as a function
of electron energy and position is one of the most impor-
tant characteristics of the interaction between an electron
beam and gas medium. There being a great number of
studies dealing with the interaction between electrons
and gas, there are still very few reported data on the EDF
with energy values above the ionization threshold, and
specifically on the EDF as a function of position [1-3].
It becomes common practice to determine the EDF using
either the Boltzmann equation or different modifications
of the Monte Carlo (MC) method. Traditionally, quasi-
stationary homogeneous conditions are considered [4].
Stated differently, the electron energy distribution func-
tion was assumed to be the same in each point of space,
hence the motion of electrons in space was not analyzed.

The present paper reports a MC direct simulation
method for calculating the stationary distribution func-
tion of electrons generated by a high-energy electron
beam in a gas of homogeneous density. Particular calcu-
lations have been made for argon and molecular nitrogen.
The results of a direct simulation have been compared
with those obtained by solving the Boltzmann equation
[5,6].

II. THE MONTE CARLO METHOD ALGORITHM

As a high-energy electron beam passes through a gas
medium, a low-temperature and weakly ionized plasma
swarm forms around the beam, resulting from molecule
ionization and scattering processes. The rate of excited
particle formation in plasma was determined by the EDF.
To calculate the EDF and excitation rates of molecules of
the homogeneous density gas, we suggest employing the
MC direct simulation method to be described as follows.

In the first stage a spatial form of a primary electron
beam was set specifying the distribution of secondary-
electron sources. The energy of each electron in the
beam was considered to be constant, since inelastic
scattering of primary electrons was neglected. The ener-
gy of each secondary electron resulting from ionization
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was chosen according to the secondary-electron spec-
trum. The energy range of secondary electrons from the
lowest threshold value of electron excited states to
(E—1I)/2, where E is the primary electron energy and I
is the ionization potential of molecules, was considered.
To set positions of secondary-electron sources a conven-
tional technique was used, while for their energies the
acceptance-rejection method [7] was employed.

Given the initial conditions described above, the
motion of each secondary electron was simulated. Their
total number was originally equal to the number of
sources. The generated secondary electron was in free
motion until it collided with a molecule. The free run
length was found by the formula [8]

I=——1 1w,
ngo;(e)
where n, is the gas density, o(e) is the cross section of

the jth scattering process with the electron energy e, and
W is a random number.

The type of collision for each electron was chosen ac-
cording to the distribution o j(e)/a,(e), where
o,(e)=3;0;(e) is total cross section with the electron
energy e. Elastic scattering, ionization, and excitation of
electron states of molecules were taken into account. All
cross sections were considered as being spatially uniform.
Electron-electron and electron-ion collisions, multistage
ionization, and impacts of the second kind, as well as en-
ergy losses of electrons under elastic scattering on mole-
cules, were neglected. If the chosen collision type result-
ed in ionization, the procedure of generating another
secondary electron would be employed. Its energy was
determined according to the secondary-electron spectrum
over the range from the minimum energy threshold of
electron excitation state to the energy (e —I)/2 where e is
the energy of an impinging electron. Positions of the gen-
erated electron were considered coincident with those
where ionization occurred.

Subsequent to the choice of the free run length, the es-
cape of the electrons from the simulation region was con-
sidered. The electrons that went out from the simulation
domain, as well as those with the energies below the
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minimum energy threshold of electron excitation state of
molecules, were eliminated from consideration. The
above procedure was repeated until the stationary distri-
bution function was determined.

III. EXCITATION RATE OF MOLECULES
AND EDF IN ELECTRON-BEAM PLASMA

The presented model was used to determine the spatial
dependencies of excitation rates of molecule electron
states and the electron energy distribution function in
each point of space. The dependence of the excitation
rate of the jth electron state on the distance from the
center of primary electron beam was found from the fol-
lowing expression:

Fj(R,-)=ng0j(E)Ubnb(R,-)+ng 2 oj(ek )vkn(R,-,Uk) s
k

(1)

where R; is the distance from the center of the primary
electron beam to the center of the ith cell, n,(R;) is the
density of primary electrons in the ith cell, and n(R;,v;)
is the distribution function of the secondary electrons in
the ith cell. The first term in (1) represents the contribu-
tion of primary electrons to the excitation rate of the jth
state, while the second one describes the contribution of
secondary electrons. The second term in (1) exhibits the
summation over energies of electrons in the ith cell.

The energy distribution function of electrons arising
from ionization of molecules is also one of the most not-
able characteristics of plasma. In our model, information
about the electron energy distribution function of secon-
dary electrons may be obtained using the energy depen-
dence of the number of electrons with the energies
exceeding e, in the finite volume. The number of such
secondary electrons in a cylinder of radius R and length
L around the primary electron beam is determined by the
expression

Nsec(emin)=27TL z

l,0<r1 <R k,e

> n(r,v), (2)
min <€k <€max
where e_,, is the maximum possible value of the
secondary-electron energy.

The foregoing covers general aspects of the proposed
method. To do particular calculations, we have chosen
molecular nitrogen and argon as gas media. The reason
is that, on the one hand, there is ample and rather com-
plete information about electron scattering cross sections,
and, on the other hand, these gases are being extensively
studied in atmospheric physics and are also being widely
used in plasma-chemical deposition of thin films in mi-
croelectronics.

For our calculations we used the following data on
cross sections: for N,, the ionization cross section [9],
the electron state excitation cross sections [10,11], and
the momentum transfer cross section [12]; for Ar, the
ionization cross section [9], the electron state excitation
cross sections [13,14], and the momentum transfer cross
section [15]. For N, the secondary-electron spectrum
was taken from [16,17], and for Ar from [18].
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FIG. 1. Radial dependencies of the excitation rates of the
electron states and the ionization rate in N, at E=5 keV. (1)
Contribution of secondary electrons. (2) Total contribution.
Solid lines, Boltzmann equation. Points, MC. (a) Ionization
rate, R,=0.32 cm, n,=9X10" cm™ (b) ionization rate,
R,=0.25 cm, n,=8.7X 10" cm™3; (c) excitation rate of state
C*Il,, R,=0.32 cm, n,=9X10" cm > (d) excitation rate of
state C*I1,, R, =0.25cm, n, =8.7X 10" cm ™.
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FIG. 2. Radial dependencies of the excitation rates of the
electron states and the ionization rate in Ar at E=5 keV. (1)
Contribution of secondary electrons. (2) Total contribution.
Solid lines, Boltzmann equation. Points, MC. (a) Ionization
rate, R,=0.32 cm, n,=9X10" cm™> (b) ionization rate,
R,=0.25 cm, n,=8.7X 10" cm™3; (c) excitation rate of state
3d,/, R;=0.32 cm, n,=9X 10" cm™3; (d) excitation rate of
state 3d,,,, R, =0.25 cm, n, =8.7X 10" cm ™.
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1 FIG. 3. The normalized number of secondary electrons in
) N,, in a cylinder of the radius R =10R,, at the energy exceeding
1o some energy value e.,, E=5 keV: (1) R,=0.32 cm,
S n,=9%10" cm™3 (2) R,=0.26 cm, n,=2.7X10" cm™%; (3)
= 10 R,=0.25 cm, n,=8.7X10" cm™>. Solid lines, Boltzmann
N 3 equation. Points, MC.
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10 To elucidate the possibilities of the proposed method,

we present the calculation results of radial dependencies
of ionization rates in N, [Figs. 1(a) and 1(b)] and Ar
[Figs. 2(a) and 2(b)], as well as excitation rates of the elec-
tron states N,: C3IT, [Figs. 1(c) and 1(d)] and Ar: 3d,
[Figs. 2(c) and 2(d)] at different values of the gas density.
The form of the primary electron beam (the beam radius
R,) was set to be Gaussian. The energy of the electron
beam was taken at 5 keV. The figures present the profiles
of the electron state excitation and ionization rates solely
by secondary electrons, and those of the total excitation
by both secondary and primary electrons. Solid lines
show the results of calculations of the corresponding
quantities on the basis of the Boltzmann equation [5,6].
It should be noted that the state C *II, of a molecule in
N, is practically not excited by high-energy electrons of
the beam, thus only rates of excitation by secondary elec-
trons were compared.

As can be seen from the figures, the form of spatial dis-
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FIG. 4. The normalized number of secondary electrons in
Ar, in a cylinder of the radius R =10R,, at the energy exceed-
ing some energy value e,;,. Designations are the same as in Fig.
3.
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tribution of secondary electrons is much more even than
that of primary electrons of the beam with the Gaussian
profile. This fact is essential for the growth of thin films
from gas mixtures excited by an electron beam where the
homogeneity of the excited flow on the substrate is one of
the problems.

Figures 3 and 4 show the energy dependencies of the
normalized number of secondary electrons with the ener-
gies exceeding e, [Eq. (2)] to the quantity of primary
electrons in the beam at different densities in N, (Fig. 3)
and Ar (Fig. 4). As above, for comparison the results ob-
tained on the basis of the Boltzmann equation [5,6] are
shown. It is seen from the figures that the behavior of
dependencies is practically invariant with the increase in
the gas density value. Note that at high densities the to-
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tal number of secondary electrons exceeds the quantity of
primary electrons. Taking into account that excitation
cross sections of different states of molecules (atoms) de-
crease with the increase in energy from 100 eV and on,
one can arrive at the conclusion that secondary electrons
make an essential, if not a greater, contribution to elec-
tron state excitation, ionization, and dissociation of mole-
cules.

The rather good agreement between the results of
direct simulation of the EDF and those obtained using
the Boltzmann equation points to the adequacy of the
proposed model and the correctness of the calculations.
The above model may be employed to perform calcula-
tions in more complicated cases, in particular under
heterogeneous gas density.
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